Abstract

We report on a forest-like-to-desert-like pattern evolution in the growth of an organic thin film observed by using an atomic force microscope. We use a modified diffusion limited aggregation model to simulate the growth process and are able to reproduce the experimental patterns. The energy of electric dipole interaction is calculated and determined to be the driving force for the pattern formation and evolution. Based on these results, single crystalline films are obtained by enhancing the electric dipole interaction while limiting effects of other growth parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.