Abstract

The high-performance, wide-range tunable thermal switches play a significant role in the thermal management, high-power-density intelligent devices, energy systems, etc. However, traditional thermal switch components, such as thermal diodes, suffer from poor stability, small adjustability, low time efficiency, and difficult implementation. Herein, we propose the superior electric-controlled thermal switch (ECTS) based on Janus monolayer MoSSe. The high-effective and asymmetric regulation of the thermal conductivity driven by electric field demonstrates a wide-range adjustable thermal switch ratio, where the peak value reaches 2.09 under the electric field of 0.04 VÅ−1. The underlying mechanism is revealed by electronic structures that the interactions between electrons and phonons are renormalized due to the electric field driving charge density redistribution, which ultimately modulates the phonon anharmonicity. The high-efficiency adjustable ECTS component is expected to provide new inspiration for next-generation thermal management and information processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.