Abstract

We theoretically investigate the spectrum of a single electron double quantum dot, defined by top gates in a graphene with a substrate-induced gap. We examine the effects of electric and magnetic fields on the spectrum of localized states, focusing on the tunability of the interdot coupling. We find that the substrate-induced gap allows for electrostatic control, with some limitations that for a fixed interdot distance, the interdot coupling cannot be made arbitrarily small due to the Klein tunneling. On the other hand, the proximity of the valence band in graphene allows for new regimes, such as an $npn$ double dot, which have no counterparts in GaAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.