Abstract

This research presents a pilot project developed within the framework of the COST Action 15,211 in which atmospheric nanoparticles were measured in July 2018, in a maritime environment in the city of Santander in Northern Spain. ELPI® + (Electrical Low-Pressure Impactor) was used to measure nanoparticle properties (electric charge, number, size distribution and surface area) from 6 nm to 10,000 nm with 14 size channels. This study focused on the range between 6 and 380 nm. It considered atmospheric nanoparticle electric charge with surface area, deposited and number by size distribution at human respiratory tract regions in a standard person in Santander according to the human respiratory tract model of ICRP 94. An empirical distribution of nanoparticles deposited in the human respiratory tract model and its electric charge is presented for the city of Santander as the main output. Percentages of total and regional deposition in human respiratory tract model were calculated for the Atlantic climate. Nanoparticles have shown an alveolar surface area deposition plateau with a size distribution range between 6 nm to 150 nm. Negative charge of nanoparticles was clearly associated with primary atmospheric nanoparticles being mainly deposited in the alveolar region where a Brownian mechanism of deposition is predominant. We can demonstrate that electric charge may be a key element in explaining Brownian deposition of the smallest particles in the human respiratory tract and that it can be linked to theoretical positive and negative impacts on human health according to several biometeorological studies. To support our analysis, aerosol samples were characterized with transmission electron microscopy and Confocal Raman spectrometer to determinate morphology, size, chemical composition, and structure. The toxicological effects of the samples with the alveolar surface area had a greater deposition, remain to be studied.

Highlights

  • This research presents a pilot project developed within the framework of the COST Action 15,211 in which atmospheric nanoparticles were measured in July 2018, in a maritime environment in the city of Santander in Northern Spain

  • Number of smallest particles is consistently high in the three respiratory regions for Ch.1 (6 nm) and has a similar regional deposition

  • At the same time, when the particles increase their size, there is a higher reduction of nanoparticle deposition at Head Airways (HA) and TB than at AL region

Read more

Summary

Introduction

This research presents a pilot project developed within the framework of the COST Action 15,211 in which atmospheric nanoparticles were measured in July 2018, in a maritime environment in the city of Santander in Northern Spain. This study focused on the range between 6 and 380 nm It considered atmospheric nanoparticle electric charge with surface area, deposited and number by size distribution at human respiratory tract regions in a standard person in Santander according to the human respiratory tract model of ICRP 94. An empirical distribution of nanoparticles deposited in the human respiratory tract model and its electric charge is presented for the city of Santander as the main output. Nanoparticles have shown an alveolar surface area deposition plateau with a size distribution range between 6 nm to 150 nm. We can demonstrate that electric charge may be a key element in explaining Brownian deposition of the smallest particles in the human respiratory tract and that it can be linked to theoretical positive and negative impacts on human health according to several biometeorological studies. Nanoparticles are only, the particles with three dimensions in 1–100 nm range, but it is generally accepted to use nanoparticle and nanomaterial ; this practice is followed in this paper

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call