Abstract

AbstractThe electric birefringence of restriction enzyme fragments of DNA has been investigated as a function of DNA concentration, buffer concentration, and molecular weight, covering a molecular weight range from 80 to 4364 base pairs (bp) (6 × 104–3 × 106 daltons). The specific birefringence of the DNA fragments is independent of DNA concentration below 20 μg DNA/ml, but decreases with increasing buffer concentration, or conductivity, of the solvent. At sufficiently low field strengths, the Kerr law is obeyed for all fragments. The electric field at which the Kerr law ends is inversely proportional to molecular weight. In the Kerr law region the rise of the birefringence is accurately symmetrical with the decay for fragments ≤ 389 bp, indicating an induced dipole orientation mechanism. The optical factor calculated from a 1/E extrapolation of the high field birefringence data is −0.028, independent of molecular weight; if a 1/E2 extrapolation is used, the optical factor is −0.023. The induced polarizability, calculated from the Kerr constant and the optical factor, is proportional to the square of the length of the DNA fragments, and inversely proportional to temperature. Saturation curves for DNA fragments ≤ 161 bp can be described by theoretical saturation curves for induced dipole orientation. The saturation curves of larger fragments are broadened, because of a polarization term which is approximately linear in E, possibly related to the saturation of the induced dipole in high electric fields. This “saturated induced dipole” is found to be 6400 D, independent of molecular weight. The melting temperature of a 216‐bp sample is decreased 6°C in an electric field of 8 kV/cm, because the lower charge density of the coil form of DNA makes it more stable in an electric field than the helix form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call