Abstract

One of the most promising ways for the realization of multi-functional materials is the integration of oxides with different properties in artificial heterostructures. In this paper, a novel piezoelectric–ferromagnetic heterostructure consisting of 0.92Na0.5Bi0.5TiO3–0.08BaTiO3 (abbreviated as BNT–BT0.08) and CoFe2O4 layers is fabricated on Si–Pt substrate, by sol–gel method coupled with spin-coating technique. The composite thin film shows only perovskite Bi0.5Na0.5TiO3-like rhombohedral phase and CoFe2O4 cubic phase. The thickness of CoFe2O4 and BNT–BT0.08 layers is ~ 280 and ~ 400 nm, respectively. BNT–BT0.08/CoFe2O4 heterostructure thin film shows a saturation magnetization of 0.11 emu/g at 5 K and 0.07 emu/g at 295 K, dielectric constant of 235 at 1 kHz and tunability of 70% at 1 kHz and an electric field E = 110 kV/cm. The results reveal that the investigated hybrid piezoelectric/ferromagnetic structure shows piezoelectric behavior, good ferroelectric and ferromagnetic properties. This bilayer composite can be used in miniature low-frequency magnetic sensor and piezoelectric sensor for biomedical domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.