Abstract
We discuss elastostatic effects on Mt. Fuji, the tallest volcano in Japan, due to historic earthquakes in Japan. The 1707 Hoei eruption, which was the most explosive historic eruption of Mt. Fuji, occurred 49 days after the Hoei earthquake (Mw 8.7) along the Nankai Trough. It was previously suggested that the Hoei earthquake induced compression of a basaltic magma reservoir and unclamping of a dike-intruded region at depth, possibly triggering magma mixing and the subsequent Plinian eruption. Here, we show that the 1707 Hoei earthquake was a special case of induced volumetric strain and normal stress changes around the magma reservoir and pathway of Mt. Fuji. The 2011 Tohoku earthquake (Mw 9), along the Japan Trench, dilated the magma reservoir. It has been proposed that dilation of a magma reservoir drives the ascent of gas bubbles with magma and further depressurization, leading to a volcanic eruption. In fact, seismicity notably increased around Mt. Fuji during the first month after the 2011 Tohoku earthquake, even when we statistically exclude aftershocks, but the small amount of strain change (< 1 μ strain) may have limited the ascent of magma. For many historic earthquakes, the magma reservoir was compressed and the magma pathway was wholly clamped. This type of interaction has little potential to mechanically trigger the deformation of a volcano. Thus, Mt. Fuji may be less susceptible to elastostatic effects because of its location relative to the sources of large tectonic earthquakes. As an exception, a possible local earthquake in the Fujikawa-kako fault zone could induce a large amount of magma reservoir dilation beneath the southern flank of Mt. Fuji.
Highlights
Volcano–earthquake interactions have been discussed mainly from a statistical perspective
We focus on the strain changes at a depth of 20 km, treating this as a typical value for the depth of a basaltic magma reservoir beneath Mt Fuji
Two hypotheses that explain eruption triggering by elastostatic deformation We estimated two kinds of elastostatic effects: volumetric strain changes around the basaltic magma reservoir and normal stress changes perpendicular to the extended dike plane
Summary
Volcano–earthquake interactions have been discussed mainly from a statistical perspective. We calculate the volumetric strain changes around the magma reservoir and the dike plane, and the normal stress changes perpendicular to the dike plane, using several scenarios modeled using historic earthquakes near Mt. Fuji, to compare with two existing hypotheses for eruption-triggering processes due to earthquakes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have