Abstract

Based on the Drucker–Prager yield criterion, the theoretical solution of stratigraphic deformation in tunnel excavation process is deduced by the cavity expansion theory. In view of soil loosening around the tunnel caused by the tunnel excavation process, the internal friction angle of the surrounding soil is not a constant but a function of normal stress. The piecewise linearization of the nonlinear yield function is used to analyze the elastoplastic solution of the cylindrical hole shrinkage. A comparison is conducted with a plastic zone in which the internal friction angle of the soil remains unchanged. It can be concluded that the radial stress, the tangential stress, the radial strain, and the tangential strain around the inner wall calculated from the former are smaller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.