Abstract
This research aims to explore how functionally active structures affect the physical, mechanical, thermal, and fire-resistant properties of elastomeric compositions using ethylene-propylene-diene rubber as a base. The inclusion of aluminosilicate microspheres, microfibers, and a phosphorus-boron-nitrogen-organic modifier in these structures creates a synergistic effect, enhancing the material's heat-insulating properties by strengthening coke and carbonization processes. This results in a 12-19% increase in heating time for unheated sample surfaces and a 6-17% increase in residual coke compared to existing analogs. Microspheres help counteract the negative impact of microfibers on composition density and thermal conductivity, while the phosphorus-boron-containing modifier allows for controlling the formation of the coke layer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have