Abstract
We report experimental observations of surface oscillations in an ultrasoft agarose gel drop. Ultrasonic levitation is used to excite shape oscillations in the gel drop and we report the natural frequency of the drop as it depends upon a nondimensional elastocapillary number, which we define as the ratio of the elastocapillary length to drop size. Our experiments span a wide range of experimental parameters and we recover the appropriate scaling laws in the elastic and capillary wave limits. The crossover between these two limits is observed and agrees well with a proposed frequency relationship.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have