Abstract
In this article, the elastocaloric effect of a commercial superelastic NiTi shape memory alloy (SMA) tube (with an outer diameter of 5 mm and wall thickness of 1 mm) to be applied in a compressive cooler was measured and analyzed. The elastocaloric effect of the tube was measured vs the applied strain and strain rate. The largest temperature changes of 21 K during loading and 16 K during unloading were measured at an applied strain of 3.30% and strain rate of 0.33 s−1. In the fatigue testing of the sample, only 0.20% of the residual strain accumulated after a runout of 1 × 106 sinusoidal force-controlled loading–unloading cycles at a maximum compressive stress of 1100 MPa and frequency of 20 Hz. Numerical results of the cooling characteristics of a compressive device using a single NiTi tube with the above-mentioned cross section and an aspect ratio of 60:1 as the refrigerant showed that the device could produce a total cooling power of up to 20 W and a coefficient of performance of up to 6.5. The results of this article demonstrate that superelastic NiTi SMA tubes of suitable wall thickness and aspect ratios are good candidates to be applied in a compressive elastocaloric cooler.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.