Abstract
The elasto-viscoplastic behavior of slanting-weft woven laminates, the fiber bundles of which are not crossed at a right angle, is investigated both macroscopically and microscopically. For this, an analysis model for the [±θ] slanting-weft woven laminate with a cross angle ±θ and its diamond-shaped unit cell are considered. Then, a basic cell, which is quarter of the unit cell, is defined as an analysis domain by considering the point-symmetry of the internal structure. For the basic cell, the homogenization theory for nonlinear time-dependent composites with point-symmetric internal structures is applied. Using the present method, the elasto-viscoplastic analysis of the [±θ] slanting-weft woven laminates subjected to an in-plane uniaxial tensile load is performed. From the analysis results, the macroscopic elasto-viscoplastic behavior and the microscopic stress and strain distributions of the laminates are investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have