Abstract

The transition in temperature and associated stress induced during machining, may affect the structural integrity of the Al7075-T6 alloy. In the present study, Steinberg Guinan material parameters were used to investigate the dynamic behaviour viz chip morphology (fracture mechanism), temperature change and flow stress in the elasto-visco material Al7075-T6. An explicit algorithm, was adopted to investigate the outcomes. Results showed chip formation and the mode of fracture was closely related with depth of cut and can influence the temperature and flow stress during the machining process. Work hardening and edge dislocation slip in the secondary shear zone was observed to have a notable influence. An optimal machining condition was found between 0.6 and 0.7 mm depth of cut.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.