Abstract
AbstractThe current investigation address a novel generalized elasto‐thermodiffusion model for a thermoelastic porous half‐space incorporating the nonlocal stress theory proposed by Eringen. Modeling of the problem is performed by adopting Moore‐Gibson‐Thompson (MGT) thermoelasticity theory defined in an integral form of a common derivative on a slipping interval, well known as the memory‐dependent derivative. The bounding plane of the medium is subjected to time‐dependent thermal and chemical shocks and there is no change in the volume fraction field. Laplace transform and the Fourier transform techniques have been adopted to represent the analytical solutions in the transformed domain. The distributions of the physical fields such as the temperature, stress, chemical potential, mass concentration and the volume fraction field were found in the real space‐time domain adopting suitable numerical scheme based on the Fourier series expansion. According to the discussion of the computational results and the respective graphical representations, the prominent role of different parameters such as the effect of nonlocality, effect of void and thermodiffusion is analyzed. Moreover, the superiority of a nonlinear kernel function compared to a linear form is also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.