Abstract

This paper concentrates on the elastic–plastic stress analysis and damage evolution of the Al-carbon fiber/epoxy composite cylindrical laminates under internal pressure and thermal residual stress. Firstly, the elastic stress analysis of the composite laminates is performed by using the classical laminate theory. Secondly, the elasto-plastic stress analysis of the liner layer is further conducted by employing the power hardening theory and the Hencky equation in the plastic theory. Finally, an universal solution algorithm based on the last-ply failure criterion is proposed to explore the damage evolution and the burst strength of the composite laminates. Effects of the winding angle and number of the composite layers as well as the thermal residual stress are addressed. The calculated burst strengths are also compared with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call