Abstract

Generally, a large, thermal residual stress is generated during the curing process for composite laminates due to differences in the coefficients of thermal expansion of the respective layers. The thermal residual stress during fabrication greatly decreases the fatigue life and dimensional accuracy of the composite structures. In the present study, through a fiber bragg grating (FBG) sensor and dielectrometry in an autoclave, the strain evolution and curing reaction in composite laminates with a stacking sequence of [05/905]S were monitored simultaneously during a conventional cure cycle and a modified cure cycle to reduce the thermal residual stress. From the study, it was verified that about 50% of the thermal residual stress during fabrication could be reduced in a composite laminate by adjusting the cure cycle; this improved the static strength and fatigue life by 16% and up to 614%, respectively, for a peak ratio of 0.9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call