Abstract

Textile Hybrid Structures are a novel type of structural system referring to the coupling of tensile form- and bending-active components into a stiffer construct. For form finding its static equilibrium shape, several computational frameworks built upon the Dynamic Relaxation method have been developed for the interactive exploration of material and geometric properties. However, efforts are still required when addressing dynamic alterations of topology without completely resetting the simulation. The main problem to face is the dynamic alteration of topological data without losing consistency of connectivity. In this paper, we present the development of a computational framework for form-finding textile hybrid structures which enables dynamic explorations of complex topological configurations during solver’s execution. A so-called evolving network formulation used to model mutable assemblies of interconnected particles is presented as well as the numerical scheme adopted to find the equilibrium state of such structures. The implementation of the framework is further described through the development of ElasticSpace, an interactive form finding tool for textile hybrid structures built with Java.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.