Abstract

The effects of long-range anisotropic elastic deformations on electronic structure in superconductors are analyzed within the framework of the Bogoliubov-de Gennes equations. Cases of twin boundaries and isolated defects are considered as illustrations. We find that the superconducting order parameter is depressed in the regions where pronounced lattice-deformation occurs. The calculated local density of states suggests that the electronic structure is strongly modulated in response to lattice deformations, and propagates to longer distances. In particular, this allows the trapping of low-lying quasiparticle states around defects. Some of our predictions can be directly tested by scanning tunneling microscopy experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.