Abstract
Prospective elasticity analyses have been used to aid in the management of fished species and the conservation of endangered species. Elasticities were examined for deterministic size-based matrix models of red abalone, Haliotis rufescens, and white abalone, H. sorenseni, to evaluate which size classes influenced population growth (lambda) the most. In the red abalone matrix, growth transitions were determined from a tag recapture study and grouped into nine size classes. In the white abalone matrix, abalone growth was determined from a laboratory study and grouped into five size classes. Survivorship was estimated from tag recapture data for red abalone using a Jolly-Seber model with size as a covariate and used for both red and white abalone. Reproduction estimates for both models used averages of the number of mature eggs produced by female red and white abalone in each size class from four-year reproduction studies. Population growth rate (lambda) was set to 1.0, and the first-year survival (larval survival through to the first size class) was estimated by iteration. Survival elasticities were higher than fecundity elasticities in both the red and white matrix models. The sizes classes with the greatest survival elasticities, and therefore the most influence on population growth in the model, were the sublegal red abalone (150-178 mm) and the largest white abalone size class (140-175 mm). For red abalone, the existing minimum legal size (178 mm) protects the size class the model suggests is critical to population growth. Implementation of education programs for novice divers coupled with renewed enforcement may serve to minimize incidental mortality of the critical size class. For white abalone, conservation efforts directed at restoring adults may have more of an impact on population growth than efforts focusing on juveniles. Our work is an example of how prospective elasticity analyses of size-structured matrix models can be used to quantitatively evaluate research priorities, fishery management strategies, and conservation options.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.