Abstract

The Rickettsiales-like prokaryote and causative agent of Withering Syndrome (WS)—Candidatus Xenohaliotis californiensis (Ca. Xc)—decimated black abalone populations along the Pacific coast of North America. White abalone—Haliotis sorenseni—are also susceptible to WS and have become nearly extinct in the wild due to overfishing in the 1970s. Candidatus Xenohaliotis californiensis proliferates within epithelial cells of the abalone gastrointestinal tract and causes clinical signs of starvation. In 2012, evidence of a putative bacteriophage associated with Ca. Xc in red abalone—Haliotis rufescens—was described. Recently, histologic examination of animals with Ca. Xc infection in California abalone populations universally appear to have the phage-containing inclusions. In this study, we investigated the current virulence of Ca. Xc in red abalone and white abalone at different environmental temperatures. Using a comparative experimental design, we observed differences over time between the two abalone species in mortality, body condition, and bacterial load by quantitative real time PCR (qPCR). By day 251, all white abalone exposed to the current variant of Ca. Xc held in the warm water (18.5 °C) treatment died, while red abalone exposed to the same conditions had a mortality rate of only 10%, despite a relatively heavy bacterial burden as determined by qPCR of posterior esophagus tissue and histological assessment at the termination of the experiment. These data support the current status of Ca. Xc as less virulent in red abalone, and may provide correlative evidence of a protective phage interaction. However, white abalone appear to remain highly susceptible to this disease. These findings have important implications for implementation of a white abalone recovery program, particularly with respect to the thermal regimes of locations where captively-reared individuals will be outplanted.

Highlights

  • Abalone are iconic benthic invertebrates that contribute to ecological health of northern Pacific coast kelp forests and serve as a food source for endangered sea otters Enhydra lutris

  • The federal white abalone recovery plan concluded that outplanting of hatchery-produced animals must be the key restoration action for successful recovery of the species (Team TWAR, 2008)

  • White abalone in warm water appear highly susceptible to the current variant of Ca

Read more

Summary

Introduction

Abalone are iconic benthic invertebrates that contribute to ecological health of northern Pacific coast kelp forests and serve as a food source for endangered sea otters Enhydra lutris. California’s wild abalone fishery flourished from the 1950s–1980s but was decommercialized in response to population declines from overexploitation followed by disease (California Department of Fish & Wildlife, 2005). The causative agent of the disease, Candidatus Xenohaliotis californiensis (Ca. Xc) is a member of the Order Rickettsiales of the Alphaproteobacteria (Friedman et al, 2000). Ca. Xc infects the luminal epithelium of the posterior portion of the esophagus (PE) and digestive gland (Moore et al, 2001). The Ca. Xc bacterium forms large oblong inclusions in the digestive tract epithelium, which are identifiable in hematoxylin- and eosin-stained tissue sections (Friedman et al, 2000)

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call