Abstract

We extend the multiple-scattering theory for elastic waves by taking into account the full vector character. The formalism for both the band structure calculation and the reflection and transmission calculations for finite slabs is presented. The latter is based on a double-layer scheme which obtains the reflection and transmission matrix elements for the multilayer slab from those of a single layer. As a demonstration of applications of the formalism, we calculate the band structures of elastic waves propagating in a three-dimensional periodic arrangement of spherical particles and voids, as well as the transmission coefficients through finite slabs. In contrast with the plane-wave method, the multiple-scattering approach exhibits advantages in handling specialized geometries (spherical geometry in the present case). We also present a comparison between theory and ultrasound experiment for a hexagonal-close-packed array of steel balls immersed in water. Excellent agreement is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.