Abstract

We report analytical solutions of a problem involving a visco-elastic solid material layer sandwiched between two fluid layers, in turn confined by two long planar walls that undergo oscillatory motion. The resulting system dynamics is rationalized, based on fluid viscosity and solid elasticity, via wave and boundary layer theory. This allows for physical interpretation of elasto-hydrodynamic coupling, potentially connecting to a broad set of biophysical phenomena and applications, from synovial joint mechanics to elastometry. Further, obtained solutions are demonstrated to be rigorous benchmarks for testing coupled incompressible fluid–hyperelastic solid and multi-phase numerical solvers, towards which we highlight challenging parameter sets. Finally, we provide an interactive online sandbox to build physical intuition, and open-source our code-base.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call