Abstract
Recent developments showed that β-type Ti–Nb alloys are good candidates for hard tissue replacement and repair. However, their elastic moduli are still to be further reduced to match Young׳s modulus values of human bone, in order to avoid stress shielding. In the present study, the effect of indium (In) additions on the structural characteristics and elastic modulus of Ti–40Nb was investigated by experimental and theoretical (ab initio) methods. Several β−type (Ti–40Nb)–xIn alloys (with x≤5.2wt%) were produced by cold-crucible casting and subsequent heat treatments (solid solutioning in the β-field followed by water quenching). All studied alloys completely retain the β-phase in the quenched condition. Room temperature mechanical tests revealed ultimate compressive strengths exceeding 770MPa, large plastic strains (>20%) and a remarkable strain hardening. The addition of up to 5.2wt% indium leads to a noticeable decrease of the elastic modulus from 69GPa to 49GPa, which is closer to that of cortical bone (<30GPa). Young׳s modulus is closely related to the bcc lattice stability and bonding characteristics. The presence of In atoms softens the parent bcc crystal lattice, as reflected by a lower elastic modulus and reduced yield strength. Ab initio and XRD data agree that upon In substitution the bcc unit cell volume increases almost linearly. The bonding characteristics of In were studied in detail, focusing on the energies that appeared from the EDOSs significant for possible hybridizations. It came out that minor In additions introduce low energy states with s character that present antibonding features with the Ti first neighboring atoms as well as with the Ti-Nb second neighboring atoms thus weakening the chemical bonds and leading to elastic softening. These results could be of use in the design of low rigidity β-type Ti-alloys with non-toxic additions, suitable for orthopedic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.