Abstract
Surfaces play a key role during ferroelastic switching and define the interactions of materials with ionic species and biological systems. Here, we perform molecular dynamics simulations and identify ridges and valleys with rounded singularities around the intersections between twin walls and surfaces. Two dominant length scales stem from the elastic bending of the surface layer (>30 lattice units) and local atomic reshuffles (some five lattice units). For static twin walls, which do not shift laterally under external stress, the intrinsic change in Young’s modulus involves softening near valleys and hardening near ridges. The boundary-induced changes in the surface Young’s modulus are of the order of 0.7%.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have