Abstract
Surfaces play a key role during ferroelastic switching and define the interactions of materials with ionic species and biological systems. Here, we perform molecular dynamics simulations and identify ridges and valleys with rounded singularities around the intersections between twin walls and surfaces. Two dominant length scales stem from the elastic bending of the surface layer (>30 lattice units) and local atomic reshuffles (some five lattice units). For static twin walls, which do not shift laterally under external stress, the intrinsic change in Young’s modulus involves softening near valleys and hardening near ridges. The boundary-induced changes in the surface Young’s modulus are of the order of 0.7%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.