Abstract

The elastic properties of several microstructural components of dry human vertebrae (T-12 and L-1) and tibiae have been investigated in the longitudinal and transverse directions using nanoindentation. The largest Young's modulus was that for the interstitial lamellae in the longitudinal direction (25.7 +/- 1.7 GPa). This was followed in decreasing order by osteons in the longitudinal direction (22.4 +/- 1.2 GPa), trabeculae in the longitudinal direction (19.4 +/- 2.3 GPa), an average over osteons and interstitial lamellae in the transverse direction [16.6 +/- 1.1 GPa (it was difficult to microstructurally distinguish osteons from interstitial lamellae in the transverse direction)], and trabeculae in the transverse direction (15.0 +/- 2.5 GPa). An ANOVA statistical analysis revealed that the values all are significantly different (p < 0.05). Since the elastic moduli in the longitudinal direction are all greater than in the transverse, measurable elastic anisotropies exist in the components. The hardnesses also varied among the microstructural components in the range 0.52-0.74 GPa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.