Abstract

The effect of thermal treatment temperatures on the dynamic and static modulus of elasticity (MOE) of Norway spruce wood (Picea abies (L.) H. Karst.) was evaluated. The dynamic MOE was measured using ultrasound and resonance methods in the longitudinal and transverse directions. The static MOE was determined by the three-point bending test. The dynamic MOE values determined by the ultrasound method were higher than the static MOE values in each case. As the temperature of the thermal treatment increased, the difference between the dynamic and static MOE values decreased. The MOE increased with increasing temperature, and it was more pronounced on a tangential surface. Increasing the sensor distance had a positive effect on the correlation between the static and dynamic MOE, and the effect from the increased temperature decreased. Measurement by the resonance method showed twice as high MOE values in the transverse direction than in the longitudinal direction. The thermal treatment caused a significant decrease in the MOE only in the transverse direction, and the differences were insignificant in the longitudinal direction. The dynamic MOE values measured by the resonance method were higher than the static MOE values but slightly lower than the values measured by the ultrasound method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call