Abstract
Surfaces grafted with poly(methyl methacrylate) (PMMA) and streptavidin were synthesized through click chemistry to investigate the role of surface stiffness on protein adsorption as the hydrophilic and hydrophobic surface coverage of the substituents vary. Surface topographies coupled with the nanoindentation results indicated that, with the appropriate selections of polymer coverage and chain length, the extent of non-specific protein adhesion could be controlled by the hydrophobic interactions between PMMA, biotin, and streptavidin. It was shown that, when the molecular weight and stiffness of PMMA was close to that of streptavidin, patchy PMMA morphologies were obtained, which help inhibit the non-specific adsorption of streptavidin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.