Abstract

This paper investigates the mechanical properties of potassium dihydrogen phosphate (KDP) crystals with the aid of nanoindentation using a conical diamond indenter. It was found that when unloading is after the first pop-in, the common method of obtaining elastic modulus from the unloading curve of nanoindentation is no longer applicable, because the unloading is inelastic. The study revealed that the pop-in could be due to dislocation nucleation and propagation, and that the first pop-in occurs under a stress below that of the major dislocation burst. Hence, the macroscopic yielding point, which is usually regarded as the onset of plasticity of a material, is nanoscopically not a critical point of the first dislocation in KDP. The study found that the elastic modulus of KDP indenting on its (001) plane is 52.8±3.8GPa. The hardness of the material is 1.89±0.05GPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call