Abstract
A robust fogwater harvester with an elastic microstaggered porous superhydrophilic framework (EMSF) has been designed. The EMSF can be fabricated by using polydimethylsiloxane and polyvinyl alcohol (PVA) via an etching method of sugar crystals pile-up cube as a template. The EMSF possesses a high porosity of 76%, of which the saturated fogwater-capturing capacity is 4 times higher than its weight, achieving a high fogwater harvesting rate (ε) of 62.7 g/cm3·h. It is attributed to the strong hydrogen bond (H-bond) interaction between hydroxyl groups (-OH) in PVA and water molecules for rapidly harvesting water and storing water in a staggered porous structure by means of a capillary force. The elasticity of EMSF allows to achieve a higher fogwater harvesting rate (ε) of 73.2 g/cm3·h via releasing the as-stored water in the EMSF under periodic external pressing. In addition, a durable corrosion resistance is demonstrated on the EMSF. This study offers a way to design novel materials that would further be extended into applications, for example, fog engineering in industry, agriculture, forest, and so forth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.