Abstract

Abstract The equivalence of the elastic forces of finite element formulations used in flexible multibody dynamics is the focus of this investigation. Two conceptually different finite element formulations that lead to exact modeling of the rigid body dynamics will be used. These are the floating frame of reference formulation and the absolute nodal coordinate formulation. It is demonstrated in this study that different element coordinate systems, which are used for the convenience of describing the element deformations in the absolute nodal coordinate formulation, lead to similar results as the element size is reduced. The equivalence of the elastic forces in the absolute nodal coordinate and the floating frame of reference formulations is shown. The result of this analysis clearly demonstrates that the instability observed in high speed rotor analytical models due to the neglect of the geometric centrifugal stiffening is not a problem inherent to a particular finite element formulation but only depends on the beam model that is used. Fourier analysis of the solutions obtained in this investigation also sheds new light on the fundamental problem of the choice of the deformable body coordinate system in the floating frame of reference formulation. A new method is presented and used to obtain a simple expression for the elastic forces in the absolute nodal coordinate formulation. This method, which employs a nonlinear elastic strain-displacement relationship, does not result in an unstable solution when the angular velocity is increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call