Abstract

The objective of this study is to investigate the accuracy of elastic force models that can be used in the absolute nodal coordinate finite element formulation for the analysis of threedimensional beams. The elastic forces of the absolute nodal coordinate formulation can be derived using a continuum mechanics approach. This study investigates the accuracy and usability of such an approach for the three-dimensional absolute nodal coordinate beam element. This study also presents an improvement proposal for the use of a continuum mechanics approach in deriving the expression of the elastic forces of the beam element. The improvement proposal is verified using several numerical examples. Numerical examples show that the proposed elastic force model of the beam element agrees with analytical results as well as with solutions obtained using existing finite element formulation. The results also imply that the beam element does not suffer from the phenomenon called shear locking. In the beam element under investigation, global displacements and slopes are used as the nodal coordinates, which resulted in a large number of nodal degrees of freedom. This study provides a physical interpretation of the nodal coordinates used in the absolute nodal coordinate beam element. It is shown that the beam element based on the absolute nodal coordinate formulation relaxes the assumption of the rigid cross-section and is capable of representing a distortional deformation of the cross-section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.