Abstract

We report on original nonlinear spectral hole-burning experiments in single wall carbon nanotubes that bring evidence of pure dephasing induced by exciton-exciton scattering. We show that the collision-induced broadening in carbon nanotubes is controlled by exciton-exciton scattering as for Wannier excitons in inorganic semiconductors, while the population relaxation is driven by exciton-exciton annihilation as for Frenkel excitons in organic materials. We demonstrate that this singular behavior originates from the intrinsic one-dimensionality of excitons in carbon nanotubes, which display unique hybrid features of organic and inorganic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.