Abstract

Atomic decoration of carbon nanotubes (CNTs) is an effective way to alter the key properties of pristine CNTs. Elastic properties and axial buckling behavior of atomic oxygen and hydroxyl chemisorbed single-walled CNTs are explored employing molecular dynamics (MD) simulations. Our results demonstrate that the structure of chemisorbed CNTs changes compared to pristine CNT which considerably depends on the distribution pattern of chemisorbed oxygen and -hydroxyl. The results also demonstrate that chemisorption of atomic oxygen and -hydroxyl reduces Young's modulus and critical strain while increases the critical force of CNTs. Buckling mode shape of chemisorbed CNTs depends on the distribution pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call