Abstract

Mechanical behaviors of single-walled carbon nanotube (SWCNT) and Ni-coated single-walled carbon nanotube (SWCNT-Ni) were investigated by using molecular dynamics (MD) simulation method. From these results of molecular dynamics simulation for two models of SWCNT and SWCNT-Ni, it was found that the Young's Modulus of SWCNT was higher than that of SWCNT-Ni, and failure stress and failure strain of SWCNT were also lower than that of SWCNT-Ni at same temperature point of 300K, 500K, and 700K. In order to understand compressing behaviors of different temperature, two different molecular models of SWCNT and SWCNT-Ni were analyzed at 300K, 500K and 700K respectively, and it was revealed that temperature fluctuation could also change the Young's Modulus, critical stress, and critical strain. In this work, it was very clear that nickel atoms on surface of SWCNT-Ni could retard local buckling at the processing of compressing. Coating nickel atoms on surface of SWCNT could improve some mechanical properties of SWCNT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call