Abstract

This study examines the elastic and dielectric properties of active composites consisting of barium titanate (BaTiO3) and silver (Ag) constituents using experimental and numerical approaches. The elastic constants including Young’s modulus, shear modulus and Poisson’s ratio were measured by resonant ultrasound spectroscopy (RUS), a nondestructive dynamic technique, while a dielectric (impedance) spectroscopy was used to measure the relative permittivity and dielectric loss at different frequencies. The dielectric tests were also conducted at temperature ranges from −50 to 200 °C where the two phase transformations of barium titanate at around 0 °C and 120 °C were examined. The experimental results in this study were compared to data available in the literature. In addition to the experimental work, a numerical method is also considered in order to study the effects of blending silver into barium titanate on the effective elastic and dielectric properties of the composite and the local field fluctuations. For this purpose, two micromechanics models describing the detailed composite microstructures were constructed. The first model is based on two dimensional (2D) images of realistic microstructures obtained by the scanning electronic microscopy (SEM), while the second model is based on randomly generated three-dimensional (3D) microstructures with spherical particles. The effects of loading direction, porosity, particle shape and dispersion were examined using the micromechanics models. Numerical predictions of the effective elastic and dielectric constants were compared to the experiment results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.