Abstract

VLS mechanism was used for growing boron doped homoepitaxial SiC layers on 4H-SiC(0 0 0 1) 8° off substrate. Si-based melts were fed by propane in the temperature range 1450–1500 °C. Two main approaches were studied to incorporate boron during growth: (1) adding elemental B in the initial melt, with two different compositions: Si 90B 10 and Si 27Ge 68B 5; the growth was performed at 1500 °C; (2) adding B 2H 6 to the gas phase during growth with a melt composition of Si 25Ge 75; the growth was performed at 1450 °C. In most cases, the growth time was limited by liquid loss. The longest growth duration (1 h) was obtained when adding B 2H 6 to the gas phase. In the case of Si 90B 10 melt, the surface morphology exhibits large and parallel terraces whereas the step front is more undulated when adding Ge. Raman and photoluminescence characterizations performed on these layers confirmed the 4H polytype of the layers in addition to the presence of B, which results in a strong B–N donor–acceptor band. The thickness and the growth rate were determined by micro-Infrared spectroscopy. Particle Induced γ-ray Emission (PIGE) was tentatively used to detect B incorporation inside the grown layers. These results were compared to SIMS measurements from which B concentration was found to vary from 10 18 to 10 19 at cm −3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.