Abstract
Picture (image) is a media that used for storing visual data, for example, two-dimensional images are often used to store an incident. Images on the internet media growth very rapidly. There are a lot of image, video, text or other content on the Internet. Image Index and image retrieval again become a topic of research in the last decade in which concentrated on how to get the meaning of an information contained in an image. Three methods outlined in the search for an image, the text-based image retrieval, content-based image retrieval and indexing images in the order of language. This study focuses on the preparation of the features of an image based on color and texture. Features colors using the average value of Hue image, texture features using Gray Level occurance Matrix (GLCM). Color, texture, and shape extraction technique resulted in eighteen (18) feature that can be used as features in the process of Clustering.DOI: 10.24843/MITE.1601.12
Highlights
Picture is a media that used for storing visual data, for example, two-dimensional images are often used to store an incident
This study focuses on the preparation of the features of an image based on color and texture
Nilai pengukuran pencarian gambar menunjukkan penggunaan fitur bentuk memiliki nilai pengukuran tertinggi, ini disebabkan karena data latih dan data uji dari kategori gajah dan bus memiliki bentuk objek yang khusus dan sangat berbeda dengan bentuk objek dari kategori gambar yang lainnya
Summary
Gambar(citra) merupakan media yang digunakan untuk menyimpan data visual, sebagai contoh gambar dua dimensi yang sering dipergunakan untuk menyimpan suatu kejadian. Gambar akan menyimpan data dan bisa dijadikan sebuahinformasi. Gambar akan dikumpulkan pada sebuah tempat yang kemudian hari bisa diambil dan dipergunakan. Tidak bisa dipungkiri kebiasaan untuk menyimpan gambar pada media internet sangat pesat. Proses pencarian dan penjelajahan sebuah gambar pada sekumpulan gambar yang banyak tentu akan membutuhkan waktu yang sangat lama. Chen Yixin (2004) mengungkapkan image retrieval dengan teknik indeks makna gambar secara otomatis merupakan hal yang sangat penting keberadaanya, pengenalan objek dan memahami gambar. Low-level merupakan ekstraksi ciri berdasarkan isi visual seperti warna dan tekstur, middle-level merupakan ekstraksi berdasarkan wilayah citra yang ditentukan dengan segmentasi, sedangkan high-level merupakan ekstraksi ciri berdasarkan informasi semantic yang terkandung dalam citra [2]. Untuk mengetahui unjuk kerja dari fitur ekstraksi mempergunakan metode pengujian recall dan precision [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.