Abstract

Content-based image retrieval (CBIR) addresses the problem of finding images relevant to the users' information needs, based principally on low-level visual features for which automatic extraction methods are available. For the development of CBIR applications, an important issue is to have efficient and objective performance assessment methods for different features and techniques. In this paper, we study the efficiency of clustering methods for image indexing with entropy-based measures. Furthermore, the self-organizing map (SOM) as an indexing method is discussed further and an analysis method that takes into account also the spatial configuration of the data on the SOM is presented. The proposed methods enable computationally light measurement of indexing and retrieval performance for individual image features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.