Abstract
The main results of the paper are a minimal element theorem and an Ekeland-type variational principle for set-valued maps whose values are compared by means of a weighted set order relation. This relation is a mixture of a lower and an upper set relation which form the building block for modern approaches to set-valued optimization. The proofs rely on nonlinear scalarization functions which admit to apply the extended Brezis–Browder theorem. Moreover, Caristi’s fixed point theorem and Takahashi’s minimization theorem for set-valued maps based on the weighted set order relation are obtained and the equivalences among all these results is verified. An application to generalized intervals is given which leads to a clear interpretation of the weighted set order relation and versions of Ekeland’s principle which might be useful in (computational) interval mathematics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have