Abstract
A novel interference alignment (IA) scheme based on the errors-in-variables (EIV) mathematic model has been proposed to overcome the channel state information (CSI) estimation error for the MIMO interference channels. By solving an equivalently unconstrained optimization problem, the proposed IA scheme employing a weighted total least squares (WTLS) algorithm can obtain the solution to a constrained optimization problem for transmit precoding (TPC) matrices and minimizes the distortion caused by imperfect CSI according to the EIV model. It is shown that the design of TPC matrices can be realized through an efficient iterative algorithm. The convergence of the proposed scheme is presented as well. Simulation results show that the proposed IA scheme is robust over MIMO interference channels with imperfect CSI, which yields significantly better sum rate performance than the existing IA schemes such as distributed iterative IA, maximum signal-to-interference-plus-noise ratio (Max SINR), and minimum mean square error (MMSE) schemes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have