Abstract

Chronic exposure to ultraviolet B (UVB) is a major cause of skin aging. The aim of the present study was to determine the photoprotective effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) against UVB-induced skin aging. By treating human dermal fibroblasts (Hs68) with EEB after UVB irradiation, we found that EEB had a cytoprotective effect. EEB treatment significantly decreased UVB-induced matrix metalloproteinase-1 (MMP-1) production by suppressing the activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling and enhancing the protein expression of tissue inhibitors of metalloproteinases (TIMPs). EEB was also found to recover the UVB-induced degradation of pro-collagen by upregulating Smad signaling. Moreover, EEB increased the mRNA expression of filaggrin, involucrin, and loricrin in UVB-irradiated human epidermal keratinocytes (HaCaT). EEB decreased UVB-induced reactive oxygen species (ROS) generation by upregulating glutathione peroxidase 1 (GPx1) and heme oxygenase-1 (HO-1) expression via nuclear factor erythroid-2-related factor 2 (Nrf2) activation in Hs68 cells. In a UVB-induced HR-1 hairless mouse model, the oral administration of EEB mitigated photoaging lesions including wrinkle formation, skin thickness, and skin dryness by downregulating MMP-1 production and upregulating the expression of pro-collagen type I alpha 1 chain (pro-COL1A1). Collectively, our findings revealed that EEB prevents UVB-induced skin damage by regulating MMP-1 and pro-collagen type I production through MAPK/AP-1 and Smad pathways.

Highlights

  • The effects of sunlight on the skin are profound and are thought to account for up to 90% of visible skin aging [1]

  • Eisenia bicyclis (Kjellman) Setchell (EEB) recovered the ultraviolet B (UVB)-reduced expression of tissue inhibitors of metalloproteinases (TIMPs)-1 and TIMP-2 in a concentration-dependent manner (Figure 3D). These results indicate that EEB reduces UVB-induced matrix metalloproteinase-1 (MMP-1) expression by regulating the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling pathway and TIMP expression

  • The phosphorylation and total expression of Smad2/Smad3 were decreased by UVB irradiation, whereas EEB upregulated these reductions in a concentration-dependent manner. These results indicate that EEB recovers UVB-induced collagen degradation by activating the Smad signaling pathway

Read more

Summary

Introduction

The effects of sunlight on the skin are profound and are thought to account for up to 90% of visible skin aging [1]. Periodic and continuous exposure to ultraviolet (UV) radiation is a classical and critical factor that contributes to skin aging, known as photoaging. Photoaging is characterized by wrinkles, inflammation, pigmentation, sagging, and dryness. UVB accounts for only a small portion of the total UV radiation, it is the most active at damaging the epidermis and dermis of the skin [2]. Several studies have reported that UVB irradiation increases intracellular reactive oxygen species (ROS), such as superoxide anions, hydroxyl free radicals, and hydrogen peroxide [3]. ROS stimulate various signaling pathways and initiate biological processes, including cell death, cellular senescence, and inflammation [4].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call