Abstract
The motor imagery brain-computer interface (MI-BCI) based on electroencephalography (EEG) is a widely used human-machine interface paradigm. However, due to the non-stationarity and individual differences among subjects in EEG signals, the decoding accuracy is limited, affecting the application of the MI-BCI. In this paper, we propose the EISATC-Fusion model for MI EEG decoding, consisting of inception block, multi-head self-attention (MSA), temporal convolutional network (TCN), and layer fusion. Specifically, we design a DS Inception block to extract multi-scale frequency band information. And design a new cnnCosMSA module based on CNN and cos attention to solve the attention collapse and improve the interpretability of the model. The TCN module is improved by the depthwise separable convolution to reduces the parameters of the model. The layer fusion consists of feature fusion and decision fusion, fully utilizing the features output by the model and enhances the robustness of the model. We improve the two-stage training strategy for model training. Early stopping is used to prevent model overfitting, and the accuracy and loss of the validation set are used as indicators for early stopping. The proposed model achieves within-subject classification accuracies of 84.57% and 87.58% on BCI Competition IV Datasets 2a and 2b, respectively. And the model achieves cross-subject classification accuracies of 67.42% and 71.23% (by transfer learning) when training the model with two sessions and one session of Dataset 2a, respectively. The interpretability of the model is demonstrated through weight visualization method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.