Abstract
A quantum particle propagates subdiffusively on a strongly disordered chain when it is coupled to itinerant hard-core bosons. We establish a generalized Einstein relation (GER) that relates such subdiffusive spread to an unusual time-dependent drift velocity, which appears as a consequence of a constant electric field. We show that GER remains valid much beyond the regime of the linear response. Qualitatively, it holds true up to strongest drivings when the nonlinear field effects lead to the Stark-like localization. Numerical calculations based on full quantum evolution are substantiated by much simpler rate equations for the boson-assisted transitions between localized Anderson states.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have