Abstract
The standard approach to dynamical random matrix models relies on the description of trajectories of eigenvalues. Using the analogy from optics, based on the duality between the Fermat principle (rays) and the Huygens principle (wavefronts), we formulate the Hamilton-Jacobi dynamics for large random matrix models. The resulting equations describe a broad class of random matrix models in a unified way, including normal (Hermitian or unitary) as well as strictly non-normal dynamics. This formalism applied to Brownian bridge dynamics allows one to calculate the asymptotics of the Harish-Chandra-Itzykson-Zuber integrals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.