Abstract
We consider an exactly solvable random matrix model related to the random transfer matrix model for disordered conductors. In the conventional random matrix models the spacing distribution of nearest neighbor eigenvalues, when expressed in units of average spacing, has a universal behavior known generally as the Wigner distribution. In contrast, our model has a single parameter, as a function of which the spacing distribution crosses over from a Wigner to a distribution which is increasingly more Poisson-like, a feature common to a wide variety of physical systems including disorder and chaos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.