Abstract
The question of whether all words in two real positive definite letters have only positive eigenvalues is addressed and settled (negatively). This question was raised some time ago in connection with a long-standing problem in theoretical physics. A large class of words that do guarantee positive eigenvalues is identified, and considerable evidence is given for the conjecture that no other words do. In the process, a fundamental question about solvability of symmetric word equations is encountered.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have