Abstract
For a bounded domain Ω with a piecewise smooth boundary in a complete Riemannian manifold M, we study eigenvalues of the Dirichlet eigenvalue problem of the Laplacian. By making use of a fact that eigenfunctions form an orthonormal basis of L2(Ω) in place of the Rayleigh–Ritz formula, we obtain inequalities for eigenvalues of the Laplacian. In particular, for lower order eigenvalues, our results extend the results of Chen and Cheng [D. Chen and Q.-M. Cheng, Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc. Japan 60 (2008) 325–339].
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have