Abstract
We study the nonlinear eigenvalue problem $f(x) = \lambda x$ for a class of maps $f: K\to K$ which are homogeneous of degree one and order-preserving, where $K\subset X$ is a closed convex cone in a Banach space X. Solutions are obtained, in part, using a theory of the "cone spectral radius" which we develop. Principal technical tools are the generalized measure of noncompactness and related degree-theoretic techniques. We apply our results to a class of problems max <p align="center"> $\max_{t\in J(s)} a(s, t)x(t) = \lambda x(s)$ <p align="left" class="times"> arising from so-called "max-plus operators," where we seek a nonnegative eigenfunction $ x\in C[0, \mu]$ and eigenvalue $\lambda$. Here $J(s) = [\alpha(s), \beta(s)] \subset [0, \mu]$ for $s\in [0, \mu]$, with $a, \alpha$, and $\beta$ given functions, and the function $a$ nonnegative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.