Abstract
We study concentration operators associated with either the discrete or the continuous Fourier transform, that is, operators that incorporate a spatial cut-off and a subsequent frequency cut-off to the Fourier inversion formula. The spectral profiles of these operators describe the number of prominent degrees of freedom in problems where functions are assumed to be supported on a certain domain and their Fourier transforms are known or measured on a second domain. We derive eigenvalue estimates that quantify the extent to which Fourier concentration operators deviate from orthogonal projectors, by bounding the number of eigenvalues that are away from 0 and 1 in terms of the geometry of the spatial and frequency domains, and a factor that grows at most poly-logarithmically on the inverse of the spectral margin. The estimates are non-asymptotic in the sense that they are applicable to concrete domains and spectral thresholds, and almost match asymptotic benchmarks. Our work covers, for the first time, non-convex and non-symmetric spatial and frequency concentration domains, as demanded by numerous applications that exploit the expected approximate low dimensionality of the modeled phenomena. The proofs build on Israel’s work on one dimensional intervals arXiv:1502.04404v1. The new ingredients are the use of redundant wave-packet expansions and a dyadic decomposition argument to obtain Schatten norm estimates for Hankel operators.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have