Abstract
It is shown that any \(\mu \in \mathbb{C}\) is an infinite multiplicity eigenvalue of the Steklov smoothing operator \(S_h\) acting on the space \(L^1_{loc}(\mathbb{R})\). For \(\mu \neq 0\) the eigenvalue-eigenfunction problem leads to studying a differential-difference equation of mixed type. An existence and uniqueness theorem is proved for this equation. Further a transformation group is defined on a countably normed space of initial functions and the spectrum of the generator of this group is studied. Some possible generalizations are pointed out.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have